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Abstract

The mobility edge (ME) is a crucial concept in understanding localization physics, marking
the critical transition between extended and localized states in the energy spectrum. An-
derson localization scaling theory predicts the absence of ME in lower dimensional systems.
Hence, the search for exact MEs, particularly for single particles in lower dimensions, has
recently garnered significant interest in both theoretical and experimental studies, resulting
in notable progress. However, several open questions remain, including the possibility of a
single system exhibiting multiple MEs and the continual existence of extended states, even
within the strong disorder domain. Here, we provide experimental evidence to address these
questions by utilizing a quasiperiodic mosaic lattice with meticulously designed nanopho-
tonic circuits. Our observations demonstrate the coexistence of both extended and localized
states in lattices with broken duality symmetry and varying modulation periods. By single
site injection and scanning the disorder level, we could approximately probe the ME of the
modulated lattice. These results corroborate recent theoretical predictions, introduce a new
avenue for investigating ME physics, and offer inspiration for further exploration of ME
physics in the quantum regime using hybrid integrated photonic devices.

Keywords: Mobility edge, Localization physics, Mosaic lattice, Nanophotonics

1. Introduction

Disorder-induced localization, a phenomenon initially predicted by P. W. Anderson in
1958 [1], has been a prominent topic in condensed matter physics [2, 3]. The scaling the-
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ory of localization [4] revealed that in lower-dimensional disordered systems, all states be-
come localized, whereas in three-dimensional systems, localized and extended eigenstates
can coexist, resulting in the existence of a critical energy Ec known as the mobility edge
(ME) [5]. Notably, when a quasiperiodic potential replaces random disorder, such as in the
Aubry-André (AA) model [6, 7], a distinct picture emerges. This model suggests an energy-
independent critical metal-insulator transition at a self-dual point, subsequently confirmed
by experiments conducted both on photonic [8] and atomic [9, 10] platforms. However, due
to its self-dual symmetry, the AA model does not possess a ME. The existence of MEs in
one-dimensional (1D) systems is primarily conjectured in more generalized models [11–35],
serving as a catalyst for experimental investigations based on ultracold atoms [36–38].

Recently, a significant advancement in the field of ME physics has emerged with the in-
troduction of Avila’s global theory [39], one of his Fields Medal work. This novel theoretical
framework has uncovered a distinct class of exactly solvable 1D models, where quasiperiodic
on-site potentials are incorporated with certain periods [40]. Referred to as mosaic lattices,
these models exhibit a range of compelling features. Notably, unlike previous models em-
ploying random or other quasiperiodic disorders, the mosaic lattice displays the remarkable
property of hosting multiple MEs while breaking self-duality symmetry. Moreover, regard-
less of the strength of the quasiperiodic potential, extended states persist throughout the
system –– a striking departure from the previous findings.

Here, we conducted experimental implementation of quasiperiodic mosaic lattices us-
ing integrated silicon nitride (Si3N4) photonic circuits with complementary metal-oxide-
semiconductor (CMOS) compatible fabrication technology [41–48]. By precisely engineering
the on-site potential of each lattice site and adjusting the in-between gaps, while maintaining
uniform hopping terms, we successfully achieved the desired quasiperiodic modulation over
a wide tuning range at room temperature. Through single-site excitation of the photonic
mosaic lattice in the strong tuning regime, we observe clear signatures of multiple MEs,
which arise from the energy-dependent coexistence of both extended and localized states in
the system. The existence of MEs is further confirmed by scanning the quasperiodic poten-
tial strength and probing the average energy of the injected state. Our results showcase the
capacity of integrated photonics platforms to investigate ME physics in a scalable and pre-
cise manner, with the potential to explore and uncover unique quantum features depending
on bosonic coalescence [49–51] in quasiperiodic lattice models.

2. Theoretical results

The Hamiltonian of the quasiperiodic mosaic model can be described as

H = J
∑
j

(
c†jcj+1 + H.c.

)
+ 2

∑
j

λjnj. (1)

Here, c†j is the creation operator at site j, J is the nearest neighbor hopping term, and λj
represents the on-site quasiperiodic potential modulation, which is given by the following
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Figure 1: Mobility edge in κ = 2 quasiperiodic mosaic lattice. (a) Schematic of the 1D quasiperiodic
mosaic lattice lattice, exemplifying the mobility edge phenomena in condensed matter physics. For the case
of κ = 2, the energy of every second lattice site is modified in accordance with Eq. 2, while the hopping
constant J between lattice sites is held constant throughout. (b) Energy diagram illustrating the dependence
of eigenstate energies on quasiperiodic potential strength (λ). Red dashed lines show the location of the
mobility edges. (c) Real-space distribution of three distinct eigenstates at a disorder strength λ/J = 5: (i)
the highest positive energy eigenstate, localized predominantly at site 8; (ii) an extended state near zero
energy; and (iii) the highest negative energy eigenstate, localized primarily at site 4. The system exhibits
two mobility edges, as described by Eq. (5), where eigenstates transition from localized to extended upon
crossing the mobility edge. (d) Sketch of the experimental setup and the SEM image of the fabricated
device. The scale bar corresponds to 100 µm.

formula,

λj =

{
λ cos[2π(ωj + θ)], j = κm,

0, otherwise .
(2)

θ is the phase offset during the modulation, ω is an irrational number, for instance (
√
5−1)/2

in our case, and κ is an integer determining the mosaic modulation period. When κ = 1, the
lattice reduces to the AA model with self-dual symmetry and transition at λ/J = 1, whereas
when κ ̸= 1, the duality symmetry of the lattices is broken. m refers to is an integer running
from 1 to N , where N is the quasi-cell number. Fig. 1a demonstrates a 1D quasiperiodic
mosaic model with κ = 2 modulation period. In our simulation and experimental design,
we set θ = 0 for the convenience, and J = 0.015 µm−1 enabling wide tuning range of the
potential amplitude modulation λj.

Following Avila’s profound global theory [39], it has been theoretically proved [40] that
the mosaic model indeed manifests energy-dependent MEs by computing the Lyapunov
exponent (see the Supplementary materials (SM) A for details), which can be described by
the following expression:

|λaκ| = J for E = Ec, with (3)

aκ =
sin(κp)

sin p
, E = 2J cos p (4)
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the parametrization of the energy E via the real (imaginary)-valued momentum p for |E| ≤
2J (|E| > 2J). A mosaic lattice with κ modulation period hosts 2(κ − 1) MEs, which are
distributed in energy spectrum around E = 2J cos(πm/κ), where aκ = 0 and the extended
states survive at arbitrarily strong potential λ, which is a new fundamental feature of mosaic
lattices (see SM A.1). For the simplest yet nontrivial case of κ = 2, the two MEs are given
by [40]

Ec = ±J2/λ. (5)

In Fig. 1b, we show the calculated eigenvalues of a 21-site lattice versus the modulation
strength λ based on our chosen parameters. To characterize the MEs, we utilize the finite-
size fractal dimension [5, 52], defined as D2 = − ln(IPR)/ lnL via the inverse participation
ratio IPR =

∑
j |ψi(j)|4 of eigenstates ψi(j), corresponding to the specific energy Ei, to

distinguish extended (D2 → 1) and localized states (D2 → 0) at large L. The dashed blue
lines represent the exact MEs for κ = 2 mosaic lattice as the transition between D2 = 0 and
1. Numerical simulations with larger sample sizes can be found in SM B.

In Fig. 1c, we showcase three distinct eigenstates intensity distribution at a disorder level
of λ/J = 5. We could see the spatial distributions of the wave functions are exponentially
localized at disordered sites j = κm (shown for the highest and lowest energy). For the
extended eigenstate, the particle tends to stay at the sites without potential modulation
(see SM A.2), this also explains the survival of extended states in the mosaic lattice at
strong potential.

3. Experimental implementation

In our experiment, we implement the photonic quasiperiodic mosaic lattices based on
integrated Si3N4 photonics platform (see SM C for more fabrication details) [53]. A scan-
ning electron microscope (SEM) image of the nanophotonic device is presented in Fig. 1d.
To design the desired on-site potential of each modulated site, we control the width of each
waveguide according to numerical vectorial mode solver. We set 550 nm as the default
width for a flexible tuning range while maintaining single-mode profile operation, and the
modulated sites are designed to yield the potential modulation at a given modulation level
of λ/J = 5, shown in SM A.1 to be enough to form all the MEs. The waveguide separation
is carefully designed to keep the hopping term uniform due to the asymmetric coupling of
different waveguide widths (see SM D for the design methods and SM F for device chara-
terization). We choose the 4th, 8th and 15th inputs to probe different regimes in the energy
diagram. We adiabatically expand the output array by a fan-out structure, and all the
output waveguides are coupled to grating couplers for the spatial intensity measurement.
An additional monitor waveguide is fabricated for the facet beam profile imaging and po-
larization control as our previous designs [54–56]. We also vary the propagation lengths in
different samples (with the same fabrication recipe) from 200 to 1000 µm with an interval
of 200 µm to probe the light dynamics in the lattices.

The schematic of the experimental setup is shown in Fig. 1d. The photonic quasiperiodic
mosaic lattice is probed using a coherent laser at a wavelength of 786 nm, which is prepared
with horizontal polarization (TE mode). The light is coupled to the lattice through a lensed
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Figure 2: Experimental probe of localized and extended states in κ = 2 mosaic lattice. (a) Real-space
distribution of light intensity probed every 200 µm along the lattice, with light injected at lattice site 4.
The observed confinement of light primarily at site 4 with minimal spreading to neighboring waveguides
indicate the strong localization due to overlap with the localized lowest energy eigenstate depicted in Fig.
1c. Similar measurement for light injected at waveguide 8, corresponding to the highest energy localized
eigenstate depicted in Fig. 1c. The observed localization of light, consistent with the behavior described
in Fig. 2a, emphasizes the strong overlap with the localized states. (b) Real-space distribution of light
intensity for light injected at site 4, 8 and 15, measured after 3000 µm of light propagation in the lattice.
The extended state exhibits significant wave-packet spreading. Bar plot below shows the light intensity
on a logarithmic scale, unfilled bars represent simulation results and colored bars indicate experimental
measurements, with the color code highlighting the light intensity. The dash-dotted red straight lines show
the theoretically predicted exponential wave-function decay with the Lyapunov exponent γ0(E) = ln |λaκ|/κ,
taken at the corresponding energy. The white arrows point out the input sites. (c) Inverse participation
ratio (IPR) calculated for the three wave packets, presented in Fig. 2a and b. Single-site excitations,
overlapping strongly with localized states, maintain a high level IPR for varying propagation lengths, while
the one, overlapping with an extended state, as the right panel in Fig. 2b, exhibits IPR reduction with the
propagation distance, reaching 0.14 at longer propagation length. This behavior confirms the ME presence
for a specific disorder strength λ.

fiber mounted on a 6-axis nano-positioning stage (Thorlabs NanoMax). The input waveguide
is divided into two paths: One serves as a monitor waveguide for polarization control, while
the other leads to the injection site. The output intensity is top-imaged using a 40X objective
and directly measured by a charge-coupled device (CCD) camera that records the reflected
light from the grating couplers. An example of image acquisition can be found in the SM E,
Fig. S3 (online).

We first probe the two localized states in κ = 2 photonic mosaic lattice. Fig. 2a presents
the top images of light intensity distribution of localized states every 200 µm along the
propagation distance. The grey circles mark the position of every site in the lattice. The
figures clearly show the strong spatial confinement of the injected light at site 4 and site 8.
These two excitation cases correspond to the lowest and highest energy eigenstates, shown
in Fig. 1c. We also calculate the theoretical predictions of the exponential wave-function
decay, based on the Lyapunov exponent calculation γ0 = ln |λaκ|/κ to the wave-packet
intensities in Fig. 2b, |ψi(j)| ∼ e−γ0|j−ji|, where maxj |ψi(j)| = |ψi(ji)|. A good agreement
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with the experimental data shows that the wave-packet dynamics at our propagation length
gives already a reasonable approximation for the corresponding localized eigenstates. To
probe an extended state in the lattice, we choose the 15th site as the excitation, based on
the overlap of the eigenstates with the site-injected wave packets. In order to demonstrate
a stark contrast between localized and extended states, we additionally prepared samples
with even longer propagation lengths (2000 and 3000 µm). Fig. 2b illustrates the light
intensity distribution in the lattice over a propagation distance of 3000 µm with both linear
(top) and logarithmic (bottom histogram) scale, confirming truly delocalized behavior of
the extended state. To quantify the transport behavior, we calculate the IPR values for
spreading wave-packets in all three cases versus propagation distance. The IPR values in
Fig. 2c for the localized cases remain close to 1 as the propagation length increases, while
the IPR value for the extended state shows the expansion of the initial single-site wave
packet (see SM A.3) and the value decreases below 0.15 at long distance. More data can
be found in SM H to showcase the extended behavior in κ = 2 photonic mosaic lattice.
Our measurements provide experimental evidence of energy-dependent localization phase
transition in the mosaic model.

Then, we investigate the κ = 3 photonic mosaic lattice comprising 34 sites at the
same modulation strength. The lattice contains four MEs given by the expression of
Ec = ±J

√
1± J/λ, see [40] and SM A1. The corresponding energy diagram is depicted

in Fig. 3a, where the four MEs have divided the spectrum into various regions. The inset
shows the an enlarged region with 4 MEs at strong modulation strength. Here, we mark
three distinct localized eigenstates as I, II, and III (see SM G for intensity distributions of
κ = 3 eigenstates), and we probe the localized states with single site excitation. After a
propagation distance of 3000 µm, the evolution pattern distributions are illustrated in Fig. 3b
and c, corresponding to localized states and extended states respectively. The experimental
data of localized states demonstrates remarkable agreement with the theoretical simulation
results (shown as blank bars in the figure), confirming the exponential localization in the
excited site. Moreover, we also inject light into the 16th, 19th and 25th waveguide, to probe
the extended state. These particular injection positions are chosen since the site has a large
overlap with the two extended eigenstates, survived at such larger potential (also shown in
SM G). Both linear and logarithmic scale intensity distributions are exhibited, and clearly
depict a marked contrast to the localized states in terms of light evolution patterns. Our
results prove the coexistence of both extended and localized states in the system at different
energies, induced by multiple MEs in the κ = 3 mosaic model.

We further confirm the existence of the ME by scanning the quasiperiodic disorder
strength in a κ = 2 mosaic lattice and investigating the critical state near ME. First,
we would like to point out again that in the photonic platform, it is commonly believed
that it is extremely challenging to excite the photonic lattice with eigenstates. Here in our
experiment, we chose to use single site excitation to probe the light dynamics. As shown in
Fig. 4a, we have shown that there are always eigenstates close to the MEs, specifically the
14th and 8th eigenstates (critical ones), while we scan the disorder strength in the range
of λ/J = 1.5 to 5. For instance, the 14th eigenstate is a critical state, so the wave packet
from single-site excitation at port 21, having the maximal overlap with it, will not be fully
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Figure 3: Experimental probe of κ = 3 mosaic lattice of 34 sites. (a) Eigenvalue evolution with increasing
quasiperiodic disorder strength λ. Each point represents the energy of an individual eigenstate, color coded
by the corresponding fractal dimension. As the disorder strength increases, the system develops four MEs
(red dashed lines), separating three localization regimes I, II, and III, see labeled panels, with two extended
eigenstates regimes in between highlighted by a fractal dimension approaching unity. The inset shows the
fine structure of 4 MEs under strong modulation strength. (b) Propagation of a single-site excitation probes
different regimes of the energy spectrum at a disorder strength of λ/J = 5. The eigenstates distributions in
real space and their overlap with the corresponding choice of single site excitation are given in the SM G.
I, II, and III present the output spatial distribution of the light intensity in a logarithmic scale after
propagating 3000 µm in the lattice. Unfilled bars represent simulation results and colored bars indicate
experimental measurements. The dash-dotted red straight lines show the theoretically predicted exponential
wave-function decay with the Lyapunov exponent γ0(E) = ln |λaκ|/κ, taken at the corresponding energy.
The experiment shows good agreement with both the analytical prediction and the simulation, where the
light is exponentially localized in the excitation lattice site. The white arrows indicate the input sites.
(c) Experimental and numerical intensity distributions after propagating 3000 µm in the lattice for a single-
site excitation at the 16th, 19th and 25th lattice site respectively, overlapping with the extended eigenstates in
the energy spectrum. More spreading of light highlights delocalization transition in the eigenstate spectrum,
thus, exhibiting a ME. The data is given in both linear and logarithmic scale.

localized under its propagation. This suggests that by choosing a small propagation distance
where the light is primarily localized at the input port, we can reconstruct the weights even
without phase information, due to the dominant light intensity at the input port. We would
also like to point out if λ/J is small, the photonic lattices actually have very little on-site
tuning strength, thus the lattices are very close to a uniform lattice and such measurements
are under the continuous-time quantum walks framework, which have been intensively ex-
plored (for instance, see Refs. [57] and [58]). The intensity distribution of these eigenstates
with λ/J = 5 is demonstrated in Fig. 4b. To approximate these intensity distributions, we
choose port 21 (for the 14th eigenstate) and 17 (for the 8th eigenstate) as our input and
probe the light evolution dynamics under a small propagation distance. From the exper-
imental output intensity distribution, we calculated the overlap between our experimental
data and different eigenstates. In Fig. 4c, it exhibits that our light dynamics always has a
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Figure 4: Probing the critical behavior near mobility edges in κ = 2 mosaic lattice. (a) provides a detailed
view of the critical 8th and 14th eigenstates relative location in the broader energy spectrum with respect
to the MEs (red dashed lines). It is noted that these eigenstates reside in close proximity to the lower and
upper branches of the exact ME, as determined by the theoretical model. The critical energy Ec is given by
Ec = J2/λ, wherein the ME occurs. (b) illustrates the spatial distribution of the 8th and 14th eigenstates
that are found to have a significant overlap with the 17th and 21st lattice sites, respectively. These specific
sites are chosen for the application of single-site excitation to effectively probe the system. (c) The color
maps present the weight overlap analysis between the eigenstates and the output intensity distribution,
obtained experimentally following the single-site excitation at the 21st and 17th waveguide and after the
wave has propagated a distance of 100 µm through the lattice structure. It is observed that the output
intensity distribution shows a considerable overlap with the 14th and 8th eigenstates, positioned near the
ME across a range of disorder strengths.

high overlap weight with the 14th eigenstates and reasonable overlap with 8th one as we
scan the disorder strength. Both panels in Fig. 4c show good overlaps with the critical
states in a whole range of disorder strength (sometimes even better than the bare single-site
overlap), which, in turn, allows us to probe the ME.

4. Conclusion

In conclusion, we have experimentally implemented a novel class of quasiperiodic mosaic
lattices, marking a significant advancement in the quest to understand ME physics. By
leveraging integrated photonics platforms, we designed and realized these mosaic lattices
in a scalable and flexible manner, enabling rapid prototyping. This approach allowed us
to effectively probe the intricate behavior arising from the coexistence of both extended
and localized states within the mosaic model, providing valuable insights into the energy-
dependent localization transition. Our work demonstrates that quasiperiodic mosaic sys-
tems indeed exhibit richer physics than commonly appreciated random disorder models,
substantially extending our understanding of the mechanisms driving phase transitions in
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disordered systems. Our experimental implementation by photonic lattice platform offers a
practical means of controlling lattice parameters (such as on-site potential, hopping term [59]
and non-Hermiticity [60]) within a wide tunable range at room temperature to study ME
physics [61, 62], in contrast to cold atomic systems. Furthermore, preparing samples with
different evolution lengths allows observation of wavepacket dynamics, which has been ex-
perimentally demonstrated to directly detect topological invariants [63, 64]. Our findings,
therefore, underscore a significant advancement in the field, with the potential to catalyze
new research directions in quantum physics, materials science, and beyond.
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