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We demonstrate high-quality monocrystalline NbN films deposited by DC magne-
tron sputtering on a GaN/AlN waveguiding heterostructure. NbN layers with a
thickness of 8 nm are grown along the [111] direction, and show two orienta-
tion domains with NbN(111) [2-1-1]//AlN (0001) [10-10] and NbN(111) [2-1-
1]//AlN(0001) [01-10] epitaxial relationships. Our NbN films display a critical
temperature of 13.2 K, with the superconducting transition taking place in a temper-
ature range of only 0.7 K. C 2014 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4898327]

Quantum optics is undergoing tremendous progress, both conceptually and experimentally. An
important remaining challenge is single-photon detection with near-unity efficiency, high time reso-
lution, low dark counts and photon-number resolution. Detection is usually carried out using semi-
conductor-based avalanche photodiodes; however, this technology is limited by large timing jitter,
unavoidable dark counts, after pulsing, and limited detection efficiency.1 A new paradigm in nano-
photonics was introduced in 2001 when single-photon detection was demonstrated with supercon-
ducting nanowire single-photon detectors (SNSPDs).2 When a photon is absorbed by a supercon-
ducting nanowire biased just below its critical current, it triggers a transition from the superconduct-
ing to the normal state, resulting in a voltage spike at the nanowire leads. Superconductivity is then
recovered within a few nanoseconds. Over the past decade, large progress has been made with this
technique.3,4 The detection efficiency can be increased by coupling the superconducting nanowire
to the evanescent field propagating in a waveguide. SNSPDs consisting of NbN-based nanowires
Si3N4 waveguides have led to 80% on-chip detection efficiency at 768 nm,5 and Si waveguides have
allowed record 91% on-chip detection efficiency at telecom wavelengths.6 However, the fabrication
of high quality, ultra-thin, superconducting layers on top of such materials is challenging. NbN
films with a thickness of 3-4 nm have been epitaxially grown on 3C-SiC, but they display stacking
faults and twinning defects originating from the SiC substrate, which resulted in a critical tempera-
ture of only 11.8 K,7 to be compared to 16 K for thick NbN films.8,9 Various buffer layers have been
tested to achieve the growth of high-quality ultra-thin (5-10 nm) NbN layers, but they all proved to
be polycrystalline and displayed a critical temperature between 8.3 and 13 K.7

GaN/AlN semiconductors, with a transparent band from 400 to 6000 nm, their mechanical and
thermal robustness and the maturity of their technology, appear as a promising material system
for waveguide fabrication.10 Furthermore, the strong electro-optic effects in III-nitrides open the
possibility of on-chip polarization control. It has been demonstrated that III-N substrates yield
improved NbN layer properties (higher critical temperature and lower resistivity11) because of the
relatively close lattice parameters of cubic NbN (111) and wurtzite GaN or AlN (0001) (2.1% lattice
mismatch with GaN and <0.2% with AlN). In this sense, NbN nanofilms on GaN buffers grown by
metalorganic vapor phase epitaxy (MOVPE) on sapphire substrates with a superconducting critical
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temperature of 13.2 K (measured at 50% of the resistance drop) and a transition width ∆T = 1.1 K
have been recently reported.12

In this work, we present high-quality NbN films on a (0001)-oriented GaN/AlN heterostruc-
ture fabricated by plasma-assisted molecular-beam epitaxy (PAMBE). The NbN layers are (111)-
textured and present domains characterized by two different epitaxial relationships: NbN(111) [2-1-
1]//AlN (0001) [10-10] and NbN(111) [2-1-1]//AlN(0001) [01-10]. The superconducting transition
takes place in a temperature range of only 0.7 K and extrapolates to zero resistance at 13.1 K.

Thin (∼8 nm) NbN layers were deposited by DC magnetron sputtering on a GaN/AlN waveg-
uiding heterostructure consisting of a 650-nm-thick GaN layer deposited by PAMBE on a 1.1-µm-
thick AlN-on-sapphire template.11 The GaN growth was performed at a growth rate of 300 nm/h, a
substrate temperature of 720 ◦C, and under slightly Ga-rich conditions, i.e. with a self-regulated Ga
film on the growth front.13–15 NbN was deposited by DC magnetron sputtering at 4 A and 420 V,
from a high purity 6” Nb target with Ar (partial pressure 1.67 × 10-2 mbar) and nitrogen (partial
pressure 0.20 × 10-2 mbar) process gases, with the nitrogen gas partially nitridating the target sur-
face. Prior to the deposition, the samples were heated to approximately 300 ◦C and cleaned with
argon plasma. Total deposition time was 14 s during which the sample was swept several time over
the target, with an effective time over the target of approximately 2 s.

Figure 1 compares the surface morphology of an NbN layer and that of the GaN/AlN waveg-
uiding structure, both measured by atomic force microscopy operated in the tapping mode. The GaN
surface presents monoatomic steps with the spiral patterns characteristic of III-nitride semiconductors
grown by PAMBE.13 The root-mean-square (rms) surface roughness is ∼0.5 nm. In the case of the
NbN layer, the GaN morphology is still distinguishable, but it appears covered by a thin grainy layer
with an rms roughness of ∼2.0 nm.

The crystalline structure of the layer was characterized using x-ray diffraction measurements
(XRD) in a Panalytical Empyrean diffractometer equipped with a Cobalt anode beam tube (Co
λKα = 1.789 Å), a Göbel mirror and a two-dimensional pixel detector used in both zero-dimensional
and one-dimensional modes. Figure 2 shows the θ-2θ diffractogram of an NbN/GaN/AlN sample,
dominated by the reflection lines originating from the sapphire substrate and the comparatively
thick GaN and AlN layers. The NbN (111) line is hardly discernible due to its high overlap with
GaN (0002) and AlN (0002). For higher angles, and therefore higher Miller indices, the three contri-
butions are more dispersed and a well-resolved NbN (222) reflection is observed at 2θ = 89.4◦. The
fact that only (hhh) type reflections from the NbN layer are detected shows that the layer is textured
along the [111] direction.

To assess the mosaicity of the NbN layer, rocking curves have been measured around the
NbN (222) reflection, as illustrated in the inset of Fig. 2. Two components are identified, a narrow
peak attributed to the mosaicity inside the NbN domains, and a broader contribution associated to
the lateral size of these domains. This measurement was repeated with different detector angular
acceptances. Whereas the width of the narrow peak varies with the resolution, preventing us from

FIG. 1. Atomic force microscopy images of the surface of (a) the GaN layer prior to NbN deposition, and (b) an 8 nm thick
NbN layer. Extracted rms roughness is 0.75 nm and 1.5 nm for images (a) and (b), respectively.
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FIG. 2. XRD θ-2θ scan along the (111) and (222) NbN reflections. The NbN (111) reflection is not resolved due to the
proximity of GaN (0002) and AlN(0002). Inset: Rocking curve around the NbN (222) reflection.

determining the mosaicity, the broader component remains constant with a full width at half maxi-
mum ∆ω = 0.87◦. An average lateral size of the domains L = 8±1 nm can be deduced from this ∆ω
using the Scherrer formula:

L =
λ

2sinθ∆ω

In order to get a deeper insight into the in-plane crystalline quality of the NbN layer, asymmet-
rical XRD reflections have been studied. The inset of Fig. 3 displays the result of an azimuthal scan
performed for 2θ fixed at the (311) Bragg angle value 2θB and the incident angle ω fixed at θB + α

where α is the angle between both [111] and [311] directions. The presence of equidistant peaks
shows that the NbN layer is monocrystalline. However, for a cubic lattice with a [111] growing
direction, we expect a three-fold symmetry, i.e. a 120◦ periodicity. The 60◦ periodicity displayed in
the inset of Fig. 3 can be attributed to the coexistence of two orientations for the NbN, induced by
the six-fold symmetry of the GaN/AlN waveguide.

Figure 3 depicts a reciprocal space map obtained around the NbN (311) and AlN and GaN
(10-13) reflections. Considering that the in-plane (Q//) and perpendicular (Q⊥) components of

FIG. 3. Reciprocal space map at Φ=89.61◦ and the offset angle α = 29.5◦ displaying the NbN (311), AlN and GaN (10-13)
reflections. Inset: Azimuthal scan for the NbN (311) reflection (2θ = 84.5529◦ and ω = 71.77645◦).
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the reciprocal space vectors associated to the NbN (311) reflection are Q⃗//
(311) = 2/3 Q⃗(21̄1̄) and

Q⃗⊥(311) = 5/3Q⃗(111), the in-plane and perpendicular lattice parameters of each layer (d[2-1-1] and d[111]
for NbN, and a and c for GaN and AlN) have been calculated from the positions of each line,
with the results presented in Table I. The values of the NbN lattice parameter extracted from the
measurement of d[2-1-1] or d[111] assuming a regular cubic lattice are also presented in the table (a//

and a⊥, respectively). The difference between the values of a// and a⊥ points to a residual in-plane
compressive strain of 0.3±0.1%.

The microstructure of the samples has been analyzed by high-resolution transmission electron
microscopy. The samples were prepared in cross-section by mechanical polishing followed by ion
milling. Figure 4(a) shows an image of the NbN layer on GaN, taken along the [11-20] zone axis of
GaN. The NbN layer is about 8 nm thick. It is formed by the coalescence of islands (Volmer-Weber
growth), all grown along the <111> NbN direction, which is aligned with the [0001] GaN axis.
However, they have two distinct orientations, namely NbN(111) [2-1-1]//AlN (0001) [10-10] and
NbN(111) [2-1-1]//AlN(0001) [01-10]. These orientations correspond to a 60◦ rotation of the lat-
tice with respect to the growth axis, as identified by the fast-Fourier transform patterns presented
in Figs. 4(b) and (c) together with a structural model describing the atomic arrangements. Such
rotation domains are commonly observed when growing a cubic material along [111] on top of the
(0001) plane of a hexagonal substrate. The presence of two crystallographic orientations explains
the 60◦ periodicity observed by XRD (inset of Fig. 3). No periodic array of dislocations is visible
at the GaN/NbN interface. This is likely due to the lateral extension of the islands which is smaller
than the expected dislocations period, as well as their three dimensional nature which allows elastic
relaxation.

In order to assess the electronic quality of the NbN layers, measurements of the critical temper-
ature were performed by varying the temperature from 300 K to 4 K. Figure 5 displays the evolution
of the resistance of an NbN layer as a function of temperature. The room-temperature resistance
measured with a four-probe experiment was R� = 220 Ω. In the 14 – 300 K range, the resistance
increases with decreasing temperature as expected for highly-resistive metallic layers, peaking at
248 Ω at 38 K. This behavior is consistent with the existence of grains whose joints decrease the
electron mean free path when temperature decreases. The left panel shows the superconducting
transition on a finer temperature scale. The critical temperature was extracted by extrapolating
the resistance curve to zero:16 we obtained a value of 13.1 K (13.2 K at 50% of the resistance
drop), higher than the 10.5 K reported for NbN layer on sputtered AlN on silicon,11 and identical
to NbN on GaN buffers grown by MOVPE.12 The resistance decreases abruptly over a narrow
temperature range ∆T = 0.7 K, taken as the difference between the temperatures corresponding to
a resistance drop of 10% and 90% from the maximum value. This rather sharp transition, smaller
than the ∆T = 1.1 K reported on monocrystalline NbN nanofilms on 3C-SiC7 and on MOVPE GaN
buffers,12 indicates the outstanding electronic properties of the layer.

TABLE I. Lattice parameters extracted from various XRD reflections. In the case of NbN, the lattice parameters along [2-1-1]
and [111] are extracted from the XRD reflections, and a// and a⊥ are the cubic lattice parameters calculated from d[2-1-1] or
d[111] assuming a regular cubic lattice.

Material Reflection Lattice parameter

(311) d[2-1-1] = 1.791 ± 0.005 Å (a// = 4.387 Å)
NbN d[111] = 2.539 ± 0.005 Å (a⊥ = 4.398 Å)

(222) d[111] = 2.541 ± 0.005 Å (a⊥ = 4.401 Å)
(10-13) a = 3.170 ± 0.005 Å

GaN c = 5.197 ± 0.005 Å
(0004) c = 5.199 ± 0.005 Å
(10-13) a = 3.108 ± 0.005 Å

AlN c = 4.983 ± 0.005 Å
(0004) c = 4.984 ± 0.005 Å
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FIG. 4. (a) High-resolution transmission electron microscopy image taken along the [11-20] zone axis of the GaN substrate
showing that the NbN layer is formed by islands. (b),(c) fast-Fourier transform pattern and structural models of both islands
marked by the squares in (a) and having a different orientations.

FIG. 5. Resistance of the NbN layer as a function of temperature. The grey line is a linear fit of R(log T) around the critical
temperature. It extrapolates to zero resistance at 13.1 K (the critical temperature at 50% drop of the resistance is 13.2 K). The
resistance decrease takes place over a rather narrow temperature range ∆T = 0.7 K.
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We have demonstrated the deposition of monocrystalline NbN (111) films on a (0001)-oriented
GaN/AlN waveguide. NbN layers are quasi-relaxed through a Volmer-Weber growth mechanism.
They are characterized by the coexistence of two epitaxial relationships with NbN(111) [2-1-
1]//AlN (0001) [10-10] and NbN(111) [2-1-1]//AlN(0001) [01-10]. An 8-nm-thick NbN-on-GaN/
AlN film displays a critical temperature of 13.1 K (13.2 K at 50% of the resistance drop). The su-
perconducting transition takes place over a temperature range of only 0.7 K. This result enables the
fabrication of high performance photonic circuits exploiting the electro-optic effects of III-nitrides.
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