
PHYSICAL REVIEW B 96, 075430 (2017)

Two-photon interference from two blinking quantum emitters
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We investigate the effect of blinking on the two-photon interference measurement from two independent
quantum emitters. We find that blinking significantly alters the statistics in the Hong-Ou-Mandel second-order
intensity correlation function g(2)(τ ) and the outcome of two-photon interference measurements performed with
independent quantum emitters. We theoretically demonstrate that the presence of blinking can be experimentally
recognized by a deviation from the g(2)

D (0) = 0.5 value when distinguishable photons from two emitters impinge on
a beam splitter. Our findings explain the significant differences between linear losses and blinking for correlation
measurements between independent sources and are experimentally verified using a parametric down-conversion
photon-pair source. We show that blinking imposes a mandatory cross-check measurement to correctly estimate
the degree of indistinguishability of photons emitted by independent quantum emitters.
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I. INTRODUCTION

Many applications of quantum optics are based on in-
terference of indistinguishable photons. Notably, successful
two-photon interference is a prerequisite for the realization of
quantum networks [1], to generate N00N states for photonic
quantum simulations [2,3] and sensing [4,5], as well as
linear optics quantum computation [6]. Since the discovery
of the underlying Hong-Ou-Mandel effect [7,8], extensive
research has been carried out to find the most suitable
sources of single and indistinguishable photons. Although
parametric down-conversion pair sources reach near-unity
visibility in two-photon interference experiments, the prob-
abilistic emission nature of the source limits its applicability.
In contrast, solid-state quantum emitters, especially self-
assembled semiconductor quantum dots (QDs), can emit
single-photons on demand [9,10], and near-unity visibility for
consecutively emitted photons from the same QD has been
recently reported [11,12]. However, applications in quantum
information processing and quantum networks [13], as well as
boosting the performance of boson-sampling machines [14],
will require multiple single-photon sources. Therefore there is
an ongoing effort to increase the nonoptimal visibilities of two-
photon interference reported in experiments performed with
independent solid-state quantum emitters [15–20]. Despite the
enormous progress made on the source side, the effect of blink-
ing [21–24], i.e., the intermittency in the emission of single-
photons from the source, on the two-photon interference has
been neglected so far. Here, we theoretically show that blinking
significantly changes the outcome of the two-photon interfer-
ence correlation measurement. Long-term blinking, since it is a
memory effect, cannot be seen as a linear loss and thus changes
the ratio between the coincidences measured at zero time delay
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and larger time delays. We demonstrate that in the presence
of blinking the measured value of the second-order intensity
correlation function g(2)

D (0) for distinguishable photons from
independent emitters impinging on a beam splitter differs
substantially from the theoretically expected value of 0.5. This
deviation is of fundamental importance to correctly estimate
the two-photon interference visibility from photons emitted by
independent quantum emitters and cannot be neglected.

II. QUANTUM DOT MEASUREMENTS

We focus our experimental quantum dot study on symmetric
GaAs/AlGaAs QDs grown via the droplet-etching method
[25]. A detailed description of the sample structure can be
found in Ref. [26]. The QDs are excited via the phonon-assisted
two-photon excitation [27], as discussed in Ref. [20]. When
performing two-photon interference measurements from inde-
pendent QDs, we take advantage of the strain-tuning technique
[28–31] to tune the emission energy of the two transitions
from the independent QDs into resonance. The effect of strain
tuning can be seen in the spectra of Figs. 1(a) and 1(b).
We start with two spectrally separated neutral excitonic
transitions from two QDs, where the emitted photons are
fully distinguishable in energy (we note that the linewidths
of the transitions from these QDs are typically an order
of magnitude smaller than the spectral resolution of our
spectrometer). By applying external stress to QD 1 we can
spectrally overlap both transitions [as shown in Fig. 1(b)],
making the photons partially indistinguishable. Note that
equal energy and polarization represent a necessary—but
not sufficient—condition for having indistinguishable photons
since dephasing processes or differences in the temporal
extent of the photon wave packets make photons partially
distinguishable. For simplicity, we will in the following refer
to the case in which polarization and energy are equal as the
“indistinguishable case”. To investigate the degree of indis-
tinguishability between the photons emitted from QD 1 and
QD 2, we perform start-stop correlation measurements. Within
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FIG. 1. (Top) Schematic of the experimental setup to measure
two-photon interference between two remote quantum dots. QD 1 is
mounted on a piezoelectric actuator inside the cryostat (snowflake) to
allow for strain-tuning of its emission energy. (a) Photoluminescence
spectrum of the neutral exciton transitions from two remote QDs. The
photons stemming from these transitions do not spectrally overlap and
are fully distinguishable. (b) Spectrum of the same transitions when
the exciton transition of QD 1 is strain-tuned in resonance with the
exciton transition of QD 2. (c) Normalized second-order intensity
correlation measurement between spectrally distinguishable photons
emitted from the transitions shown in (a). (d) Same as in (c) when
the two transitions are tuned in energetic resonance. The blue data is
taken when both photons have the same polarization, i.e., the photons
are indistinguishable. The red data is taken when the photons have
perpendicular polarization, i.e., the photons are fully distinguishable.
The dashed line represents the theoretically expected value of 0.5 of
the center peak for fully distinguishable photons.

our experimental conditions (low detection probability and low
excitation power so that each detector event corresponds to a
single impinging photon) such a start-stop experiment gives a
good approximation of the second-order intensity correlation
function g(2) [32]. We investigate three cases: the photons are
energetically not overlapping [distinguishable case 1, shown
in Fig. 1(c) as a red bar plot], the photons are energetically
overlapping and have the same polarization [indistinguishable
case, shown in Fig. 1(d) as a blue bar plot], and the photons are
energetically overlapping but have perpendicular polarizations
[distinguishable case 2, shown in Fig. 1(d) as a red bar plot].
During all correlation measurements we keep the average
single-photon detection rate of both QD transitions equal (for
the importance of this requirement see the theory Sec. VI in
the following). In Figs. 1(c) and 1(d), we plot the normalized
coincidence counts integrated within 4-ns time bins around

every laser pulse repetition cycle. We normalize the data to
the mean coincidence counts of the first seven side peaks on
each side of the zero time delay peak. In order to estimate the
degree of indistinguishability, only the values of the second-
order intensity correlation functions at time delay zero are
relevant. Interestingly, the second-order intensity correlation
measurement for the distinguishable case 1 [shown in Fig. 1(c)]
does not reach the theoretical limit of g(2)

D (0) = 0.5 for distin-
guishable photons but rather g(2)

D (0) = 0.29 ± 0.04. For the
indistinguishable case [blue bar plot in Fig. 1(d)], we extract
a g(2)(0) = 0.18 ± 0.03, suggesting a very high degree of
indistinguishability, whose visibility V can be calculated using

V = g(2)
D (0) − g(2)(0)

g(2)
D (0)

. (1)

We would like to emphasize that assuming the theoretically
expected value of g(2)

D (0) = 0.5 [33,34] would lead to a
much higher visibility of two-photon interference. It is
therefore extremely important to understand the reasons why
g(2)

D (0) < 0.5 occurs in our experiments with distinguishable
photons. Even though one can find similar data on a different
type of quantum emitter in the literature [18], the deviation
from the theoretical limit of g(2)

D (0) = 0.5 has never been
discussed so far to the best of our knowledge.

To verify our experimental finding and to exclude experi-
mental artifacts, we also perform a cross-polarized two-photon
interference measurement for the same two independent QDs
(distinguishable case 2). We start from the energetically over-
lapping case [as shown in Fig. 1(b)] and rotate the polarization
of the photons from QD 1 perpendicular to the polarization of
the photons from QD 2, making them distinguishable again.
This distinguishable case 2 is shown in Fig. 1(d) as a red bar
plot. From this measurement we extract g(2)

D (0) = 0.32 ± 0.04,
which is comparable to the energetically detuned case [see
Fig. 1(c)]. In addition, we note that in the case of two-photon
interference measurements performed with consecutive pho-
tons from the same quantum emitter, the cross-polarized
two-photon interference measurement does reach the classical
limit of 0.5. Thus we can not only exclude any experimental
error in our measurements but we can also link the effect of
measuring a g(2)

D (0) < 0.5 to the uncorrelated photon emission
between fully independent quantum emitters. In the following,
we will theoretically analyze the two-photon interference
measurements from independent quantum emitters and show
the origin of this effect.

III. THEORY

We assume that we have two independent QDs pumped
optically by a coherent state pulse train. Since the respective
pump pulses are in coherent states, there will be no quan-
tum correlations between the QDs, so that their respective
emissions will be assumed to be uncorrelated, i.e., the joint
emission state will be a tensor product of the respective QD
emitted states. We will also assume that each QD emits at
most one photon at a time. The emitted photons are made
to interfere on a 50:50 beam splitter. (We note that it is
straightforward to model other mixing ratios by assigning
different overall generation/propagation/detection quantum
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efficiencies to the two sources.) The detected photons from
each of the QDs are assumed to be in a single spatiotemporal
mode, but they may have different polarization states. The
latter degree of freedom can be used to model any other
degree of distinguishability, such as spatial, temporal, or
spectral mismatch. We will treat four cases, when the detected
photons are truly indistinguishable and when the photons are
fully distinguishable, under the assumption that the QDs do
not blink. We will then treat the same two cases under the
assumption that the QDs blink, but only for the case when
the characteristic blinking frequency is much smaller than the
pump pulse rate and the spontaneous emission rate of the QDs.
To calculate the coincidence probabilities we will assume that
we have two detectors. One is placed at “the first” output port
of the beam splitter and it provides a start pulse. Another is
placed in “the second” port of the beam splitter and provides
the stop pulse. The interesting information is the probability
distribution of the times between successive start and stop
pulses, which we calculate for all the cases discussed above.

A. Indistinguishable photons, no blinking

We shall assume that each QD (labeled as j = 1,2) emits a
state described by the density matrix

ε2
j |1〉〈1| + (

1 − ε2
j

)|0〉〈0|. (2)

The parameter εj will account for all losses up until the
beam splitter, such as emission into other modes, imperfect
coupling of the “interesting” mode into the subsequent optical
system, component losses, and imperfect alignment. Since all
of these processes can be modeled as a linear loss, they can be
lumped together into a single, overall parameter without loss
of generality [35].

When two such states impinge on a 50:50 beam splitter
described by the unitary 2 x 2 matrix with U11 = U22 = U12 =
−U21 = 1/

√
2, the ensuing output state ρ̂ becomes

ρ̂ = ε2
1ε

2
2

2
(|2,0〉 − |0,2〉) ⊗ H.c.

+ ε2
1

(
1 − ε2

2

)
2

(|1,0〉 + |0,1〉) ⊗ H.c.

+ ε2
2

(
1 − ε2

1

)
2

(|1,0〉 − |0,1〉) ⊗ H.c.

+ (
1 − ε2

1

)(
1 − ε2

2

)|0,0〉 ⊗ H.c., (3)

where H.c. denotes the Hermitian conjugate of the factor to
the left and, e.g., |2,0〉 denotes a product state of two photons
in the detected mode exiting the “first” beam splitter port and
no photon exiting the second port.

Suppose that at least one photon is detected at the first
port at time t = 0. The state in the second mode then
instantly collapses onto the state |0〉〈0|. This means that in this
case there can be no coincidence between the two detectors
detected at the same time (meaning, in practice, within the
spontaneous emission time of the QDs). We thus conclude
that the probability p(0) of getting a stop pulse at t = 0 is
p(0) = 0.

However, one pump pulse later, at t = τ , there is anew
a state as in Eq. (2) emitted from each QD, which after the

beam splitter will have the form of Eq. (3). Since this state is
uncorrelated to the state at t = 0, the probability p of detecting
at least one photon at the second beam splitter output port at
t = τ is

p(τ ) = η2
2

[
ε2

1ε
2
2

(
2 − η2

2

)
2

+ ε2
1

(
1 − ε2

2

)
2

+ ε2
2

(
1 − ε2

1

)
2

]

= η2
2
ε2

1 + ε2
2 − η2

2ε
2
1ε

2
2

2
, (4)

where η2
2 (η2

1) is the detection efficiency at the second (first)
beam splitter output port. Should the second detector not
detect a photon, which happens with probability 1 − p(τ ),
it has a new chance at time t = 2τ . The probability of
detecting a photon at the second output port at that time is
p(2τ ) = p(τ )[1 − p(τ )]. (Note that if the photon is detected
at time τ , photon counting restarts, so that we must consider the
conditional probability.) Likewise, the probability of detecting
a photon at time t = mτ will be p(mτ ) = p(τ )[1 − p(τ )]m−1,
m = 1,2, . . .. In the limit when ε1 = ε2 = ε � 1, the proba-
bility of a stop pulse at t = τ simplifies to p(τ ) = η2

2ε
2.

B. Distinguishable photons, no blinking

In this case, we shall assume that the two QDs emit states
described by

ε2
1 |V 〉〈V | + (

1 − ε2
1

)|0〉〈0| (5)

and

ε2
2 |H 〉〈H | + (

1 − ε2
2

)|0〉〈0|, (6)

respectively. Here, e.g., |V 〉 denotes one photon in vertical
polarization. This state is orthogonal to the state |H 〉 meaning
that they are single shot, 100% distinguishable and thus they
will not interfere. Below we shall also use the notation |V H 〉
that denotes one vertically and one horizontally polarized
photon in one spatiotemporal mode. By assuming that the
two states above impinge on a 50:50 beam splitter, one arrives
at the state ρ̂ ′ given by

ρ̂ ′ = ε2
1ε

2
2

4
(|V H,0〉 − |V,H 〉 + |H,V 〉 − |0,V H 〉) ⊗ H.c.

+ ε2
1

(
1 − ε2

2

)
2

(|V,0〉 + |0,V 〉) ⊗ H.c.

+ ε2
2

(
1 − ε2

1

)
2

(|H,0〉 − |0,H 〉) ⊗ H.c.

+ (
1 − ε2

1

)(
1 − ε2

2

)|0,0〉 ⊗ H.c. (7)

Suppose now that at least one photon, irrespective of
polarization, is detected at the first beam splitter output at
time t = 0. The state at the second beam splitter output port
then collapses into the state

1

N

[
ε2

1ε
2
2

4

(|V 〉〈V | + |H 〉〈H | − [
2 + η2

1

]|0〉〈0|)

+
(

ε2
1 + ε2

2

2

)
|0〉〈0|

]
, (8)

where the state normalization factor is N = (ε2
1 + ε2

2 )/2 −
η2

1ε
2
1ε

2
2/4. Thus the probability pD(0) of detecting one photon
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also at the second beam splitter port at t = 0 becomes

pD(0) = 2η2
2ε

2
1ε

2
2

2
(
ε2

1 + ε2
2

) − η2
1ε

2
1ε

2
2

. (9)

At time t = τ , uncorrelated states are emitted, so given the
situation that no photon was detected at the second beam
splitter port at t = 0 (that happens with probability 1 − pD(0)),
the probability of detecting the stop pulse at t = τ becomes

pD(τ ) = η2
2[1 − pD(0)]

2
(
ε2

1 + ε2
2

) − η2
2ε

2
1ε

2
2

4

= η2
2[1 − pD(0)]pD, (10)

where pD = 2(ε2
1+ε2

2 )−η2
2ε

2
1ε2

2
4 . In the same manner as for in-

distinguishable photons, the probability of detecting the first
stop pulse at t = 2τ becomes pD(2τ ) = η2

2[1 − pD(0)][1 −
pD]pD and the probability that the stop pulse comes at time
t = mτ is pD(mτ ) = η2

2[1 − pD(0)](1 − pD)m−1pD .
In the limit when ε1 = ε2 = ε � 1, the probability of a stop

pulse at t = 0 becomes pD(0) = η2
2ε

2/2 and the probability
of a stop pulse at t = τ simplifies to pD(τ ) = η2

2ε
2. Hence the

ratio pD(0)/pD(τ ) = 1/2, which is the theoretically expected
value g(2)

D (0) we have mentioned in Sec. II.

C. Indistinguishable photons, blinking

Here we introduce the further complication that the QDs
may blink, that is, they randomly (in time) enter a “dark state”,
i.e., a state where they do not emit any photons at all or only
at frequencies which are not detected. If the typical times
between the transitions from a bright to a dark state, or vice
versa, are very long compared to the other time scales of the
problem, then we can neglect the situations where one QD
makes such a transition right after the start pulse is detected.
Hence we will only consider the four possibilities that none
of the QDs are dark when the start pulse is detected until
a stop pulse is detected, that only one of the two QDs is
dark (but that the other remains in an emitting state for the
entire duration between a start and a stop pulse), and that
both of them are dark. If we make the reasonable assumption
that the two QDs blink independently, and assume that the
probabilities of QD j = 1,2 to be in the on-state to be πj ,
then the probability of detecting a coincidence at time t = 0
is still zero since a coincident detection cannot happen for
indistinguishable photons irrespective if both QDs are emitting
or if only one of them is emitting. Thus the corresponding
probability p′(0) = 0, where the prime indicates that the QDs
are assumed to be blinking.

Given that we detected at least one photon at the first beam
splitter port (giving the start signal), the state at the detectors
at t = τ is independent of the “start event”. To detect a photon
at the second output port given that there was a start pulse
(eliminating the possibility that both QDs were in there dark
state) requires that either only the first, only the second, or both
the QDs are emitting. The conditional probabilities for this are
π1(1 − π2)/(π1 + π2 − π1π2), π2(1 − π1)/(π1 + π2 − π1π2)
and π1π2/(π1 + π2 − π1π2), respectively. In the first two
cases, the probability for finding an emitted photon at the
second port is ε2

i /2. Hence the probability of detecting the

stop pulse at time t = τ becomes

p′(τ ) = η2
2

[
π1(1 − π2)

π1 + π2 − π1π2

ε2
1

2
+ π2(1 − π1)

π1 + π2 − π1π2

ε2
2

2

+ π1π2

π1 + π2 − π1π2

ε2
1 + ε2

2 − η2
2ε

2
1ε

2
2

2

]
. (11)

The probability of detecting the stop pulse at t = 2τ becomes

p′(2τ ) = η2
2

[
π1(1 − π2)

π1 + π2 − π1π2

(
1 − η2

2ε
2
1

2

)
ε2

1

2

+ π2(1 − π1)

π1 + π2 − π1π2

(
1 − η2

2ε
2
2

2

)
ε2

2

2

+ π1π2

π1 + π2 − π1π2

(
1 − η2

2
ε2

1 + ε2
2 − η2

2ε
2
1ε

2
2

2

)

× ε2
1 + ε2

2 − η2
2ε

2
1ε

2
2

2

]
. (12)

For t = mτ , the probability becomes

p′(mτ ) = η2
2

[
π1(1 − π2)

π1 + π2 − π1π2

(
1 − η2

2ε
2
1

2

)m−1
ε2

1

2

+ π2(1 − π1)

π1 + π2 − π1π2

(
1 − η2

2ε
2
2

2

)m−1
ε2

2

2

+ π1π2

π1 + π2 − π1π2

(
1 − η2

2
ε2

1 + ε2
2 − η2

2ε
2
1ε

2
2

2

)m−1

× ε2
1 + ε2

2 − η2
2ε

2
1ε

2
2

2

]
. (13)

In the limit ε1 = ε2 = ε � 1, and assuming that π1 = π2 =
1/2 (i.e., that the QDs spent half of the time in a bright and half
in a dark state), the probability of a stop pulse at t = τ becomes
p′(τ ) = 2η2

2ε
2/3. If instead we assume that π1 = π2 = π � 1

(i.e., the QDs are most of the time in a dark state), then we
arrive at the result p′(τ ) = η2

2ε
2/2. The reason the results are

independent of the on-state probability π is that in order to
have a start pulse, at least one QD must be in the on-state.
Thus, when looking for a stop pulse, we know already that at
least one of the QDs is emitting, eliminating the unconditional
probability ∝ π that this is the case at any time.

We also note that for perfectly indistinguishable, emitted
photons, the probability of detecting a coincidence at t = 0
remains zero, no matter if the two emitters are blinking or not.
Both probabilities p(0) and p′(0) vanish. This is an obvious
result, since both emitters emit single photons (so that two
photons from the same dot cannot be detected at the two output
ports) and indistinguishability implies that photons emitted
by the two QDs exit the same port of the beam splitter. It
is therefore not possible to distinguish between these two
possibilities (blinking/nonblinking) based on a comparison
between the ratios p(0)/p(τ ) and p′(0)/p′(τ ) since both are
ideally zero.

D. Distinguishable photons, blinking

In this case, we can compute the probability for a coin-
cidence at t = 0 directly from the result in Sec. III B. We
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first note that in order to get a start pulse at the detector at
the first beam splitter port either one, the other, or both QDs
must be in their emitting states. The conditional probabilities
for this are π1(1 − π2)/(π1 + π2 − π1π2), π2(1 − π1)/(π1 +
π2 − π1π2), and π1π2/(π1 + π2 − π1π2). Noting that in order
to get a stop pulse at t = 0 to be a possibility, neither of the
QDs can be in their dark state. The probability for this, given
that we had a start pulse, is

p′
D(0) = η2

2
π1π2

π1 + π2 − π1π2

2ε2
1ε

2
2

2
(
ε2

1 + ε2
2

) − η2
1ε

2
1ε

2
2

. (14)

The probability of detecting at least one photon at the
second beam splitter port at time t = τ , given that one photon
was detected at the first port but none at the second at t = 0 is
given by

p′
D(τ ) = η2

2

[
π1(1 − π2)

π1 + π2 − π1π2

ε2
1

2
+ π2(1 − π1)

π1 + π2 − π1π2

ε2
2

2

+ π1π2

π1 + π2 − π1π2

(
1 − 2η2

2ε
2
1ε

2
2

2
(
ε2

1 + ε2
2

) − η2
1ε

2
1ε

2
2

)

× 2
(
ε2

1 + ε2
2

) − η2
2ε

2
1ε

2
2

4

]
, (15)

where we have used the fact that the emission from subsequent
pump pulses is uncorrelated, that if we detect a start pulse, this
rules out the possibility of having both QDs in their respective
dark states, and if only one QD is in its dark state, we cannot
get a coincidence at t = 0.

The probability of getting a stop pulse at t = mτ , m =
1,2, . . . becomes, in this case,

p′
D(mτ ) = η2

2

[
π1(1 − π2)

π1 + π2 − π1π2

(
1 − η2

2ε
2
1

2

)m−1
ε2

1

2

+ π2(1 − π1)

π1 + π2 − π1π2

(
1 − η2

2ε
2
2

2

)m−1
ε2

2

2

+ π1π2

π1 + π2 − π1π2

(
1 − 2η2

2ε
2
1ε

2
2

2
(
ε2

1 + ε2
2

) − η2
1ε

2
1ε

2
2

)

×
(

1 − η2
2
ε2

1 + ε2
2 − η2

2ε
2
1ε

2
2

2

)m−1

×2
(
ε2

1 + ε2
2

) − η2
2ε

2
1ε

2
2

4

]
. (16)

In the limit ε1 = ε2 = ε � 1, and assuming that π1 = π2 =
1/2 the probability of a stop pulse at t = 0 becomes p′

D(0) =
η2

2ε
2/6 and getting a stop pulse at t = τ is p′

D(τ ) = 2η2
2ε

2/3.
Hence the ratio between these two probabilities is 1/4, smaller
than in the nonblinking case and thus a factor of 1/2 smaller
than the normalized second-order correlation function g

(2)
D (0)

one would have expected from distinguishable, nonblinking
photons. If instead we assume that π1 = π2 = π � 1, then we
arrive at the probability p′

D(0) = πη2
2ε

2/4 to get a stop pulse
at t = 0 and the probability p′

D(τ ) = η2
2ε

2/2 to get the stop
pulse at t = τ . In this case, the ratio between the probabilities
is π/2. The latter can be very small if the on-state probability
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2/ 1=0.2
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FIG. 2. Calculated p′
D(0)/p′

D(τ ) ratio as a function π1, which
is the probability that QD j = 1 is in the on-state. The different
curves represent different on-state ratios (π2/π1) between the two
QDs j = 1,2. It is assumed that ε1 = ε2 � 1 and η1 = η2 = 1.

π is small. In Fig. 2, we plot the p′
D(0)/p′

D(τ ) ratio as a
function π1 for four different on-state ratios (π2/π1). In the
presence of blinking the p′

D(0)/p′
D(τ ) ratio is clearly smaller

than 0.5, leading to g(2)
D (0) < 0.5, as observed in the quantum

dot experiments. One sees that for blinking emitters, the ratio
p′

D(0)/p′
D(τ ) can be arbitrarily small.

For nonblinking emitters a ratio below 1/2 would indicate
that the emitted photons were partly indistinguishable, or that
the efficiency (e.g., setup losses, collection efficiency, etc.)
of the two sources are not equal. It is important to point
out the latter explanation cannot be invoked to explain the
deviation from 0.5 observed in the experimental data of Fig. 1.
In fact, this hypothesis would imply more than a factor 2
difference in the efficiency of the two QDs, something that
we have experimentally ruled out (see Sec. II). However,
for blinking emitters, a deviation from the theoretical value
of 0.5 can be observed even when the efficiencies are kept
the same. In this case, the proper way of assessing the
indistinguishability of the emitted photons is to make the
emitters perfectly distinguishable (e.g., by transforming them
into mutually orthogonal polarization states) and measuring
the p′

D(0)/p′
D(τ ) ratio. Subsequently, one makes the photons

as indistinguishable as possible and re-measures this ratio.
Only the comparison between these two ratios will quantify
the indistinguishability of the emitted photons.

E. Comments

We note that for inefficient QDs (time spent in dark state
much larger than time spent in bright state, i.e., π � 1) the
probability ratio between getting a stop pulse at t = 0 and
getting a stop pulse at t = τ goes to zero. The reason is that,
in order to detect a stop pulse at τ = 0 (for distinguishable
photons), both QDs need to be in their on-state. Whereas, to
detect a stop pulse at t = τ it suffices that at least one QD
is in its on-state. For small values of π , the probability ratio
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between these two cases is roughly π . The implication will be
further explained in the following section.

IV. IMPLICATIONS AND EXPERIMENTAL
VERIFICATION

Let us redo the derivation of p′
D(τ ) in Sec. III D, but now

assume a coincidence type of measurement rather than a start-
stop measurement (the full derivation is given in the appendix).
The origin of the observed behavior now appears much
more clearly. The probability P ′

D(τ ) of getting a coincidence
at time delay τ , when blinking is present, is in this case
given by

P ′
D(τ ) = r2η2

1η
2
2

2

(
π1ε

4
1 + π2ε

4
2 + 2π1π2ε

2
1ε

2
2

)
, (17)

where r is a constant relating to the emission probability. The
last term corresponds to coincidences of photons from two
separate emitters. This term scales equally with the blinking
on-state probabilities πi and the total quantum efficiencies
ε2
i . In this contribution to P ′

D(τ ), one can not distinguish
photons “lost” through blinking from linear loss. However,
the first two terms, corresponding to coincidences of two
photons emitted from the same emitter separated by a time
delay τ , scales linearly with blinking on state probability
πi and quadratically with total quantum efficiency ε2

i . This
contribution raises P ′

D(τ ) when the nonunity efficiency is due
to blinking rather than due to linear loss, and thereby it lowers
the ratio P ′

D(0)/P ′
D(τ ), when blinking is present, since the

contribution from these two terms is of course zero at zero time
delay (the sources emit single photons). This lets us conclude
that the origin of the deviation towards zero of g(2)(0)/g(2)(τ )
when blinking is present lies in the inherent difference between
blinking and other types of (linear) losses exhibited by the
emitted photons.

This result should be obvious when looking more closely
at the following example situation: Consider only photons
emitted from quantum emitter no. 1 (π2 = 0) and assume
π1 = 1/2. Now, either two consecutive photons pass through
the setup (when the emitter is in the on-state) or none do
(when in the off-state). This would result in half the number of
coincidences, at a time delay τ , compared to when no blinking
is present. In contrast, assuming a unity on-state probability
π1 = 1 but adding a filter with transmission T = 1/2 results in
1/4 the number of coincidences compared to when no blinking
or filtering is present, since each photon has a 1/2 probability
of getting lost.

To further clarify the difference between blinking and linear
loss we performed a simple experiment, using an inherently
nonblinking parametric down conversion source providing
indistinguishable single photons [two-photon interference vis-
ibility V = 0.929 ± 0.002 (raw data)], a chopper with variable
duty cycle corresponding to blinking on-state probabilities
πi , and filters with varying transmittance to vary the overall
quantum efficiency ε2

i .

A. Measurement setup

A schematic of the measurement setup is depicted in
Fig. 3. A periodically poled potassium titanyl phosphate

cw laser
Laser 
filter

BS

Detector

Detector
PBSppKTP

V

H

Chopper

(a)

cw laser
Laser 
filter

BS

Detector

Detector
PBSppKTP

V

H

Variable
filter

(b)

FIG. 3. Schematic of the parametric down conversion setup for
investigating the difference of linear losses and blinking. Either (a)
a chopper is inserted to mimick blinking or (b) a variable linear loss
filter.

(ppKTP) crystal is pumped with a cw laser of wavelength
405 nm. Photon pairs are spontaneously generated at 810 nm
wavelength and of perpendicular polarization. The pair is split
on a polarizing beam splitter and one output is immediately
blocked, while the other is let to impinge on an ordinary
50:50 beam splitter. The outputs from the beam splitter are
coupled into single mode fibers, and detected by avalanche
photo diodes. The quantum efficiencies of the detectors are
around 50% at 810 nm.

Either a chopper [Fig. 3(a)] of varying duty cycles or filters
with varying transmittance [Fig. 3(b)] can be inserted in the
stream of single photons. The chopper frequency is chosen to
be around 200 Hz, corresponding to a blinking time scale of
milliseconds. The duty cycle of the choppers can be varied in
the interval 0%–50% transmission.

B. Effect of blinking versus linear loss

The coincidence counts at time delay τ = 300 ns between
the two detectors were measured as a function of chopper duty
cycle π and filter transmission ε2. The results are presented
in Fig. 4. Solid lines correspond to Eq. (17) setting π2 = 0,
and the prefactor, a combination of emission rate and detector
efficiency, adjusted to fit the common end points of the filter
and chopper data point sequences.

The data confirms the theoretical findings that this con-
tribution to p′

D(τ ) scales linearly with the blinking on-state
probability π (chopper duty cycle) but quadratic with the
linear loss ε2 (filter transmission). We can clearly observe that
blinking and linear loss affect the correlation measurement in
different ways, with the blinking resulting in proportionally
higher side peaks and thus lowering the ratio p′

D(0)/p′
D(τ ).

V. TWO-PHOTON INTERFERENCE FROM A SINGLE
BLINKING QUANTUM DOT

We would like to give a final remark on the single quantum
dot HOM-type experiments where consecutive photons from
the same quantum dot are interfered in an unbalanced Mach-
Zehnder interferometer to determine the photon indistin-
guishability. For a single emitter, three situations can occur.
(1) The quantum emitter is in the on-state both at the start
and the stop signal. This is described by the standard theory.
(2) The quantum emitter is in the off-state. This gives no
contribution to the second-order intensity correlation function
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FIG. 4. Effect of blinking versus linear loss. The data points are
measured coincidences at time delay τ = 300 ns, between photons
entering the beam splitter through the same input port, as a function of
induced blinking on-state probability π (blue) and filter transmission
ε2 (linear loss, red). Error bars account for statistical errors. Solid
lines represent Eq. (17), setting π2 = 0.

at all. (3) The quantum emitter is in the on-state, giving a
start signal, but switches in the off-state before we get a
stop signal. The stop signal will only come as the quantum
emitter returns in the on-state again. In general, this condition
can be treated as for the case of blinking quantum dots we
discussed above. However, this is an extremely rare event, as
the blinking is typically very slow compared to the spontaneous
emission decay time and pump repetition period. Thus, in
practice, it will hardly make any contribution to the second
order intensity correlation function. In experiments with two
quantum emitters, the relevant parameter is the probability that
the quantum emitter is in its on-state, not the probability that
it made a transition between the start and the stop pulse. Thus
the effect of blinking is significant for two blinking quantum
emitter but insignificant for a single blinking emitter.

VI. CONCLUSION

In our study, we have shown that the second-order intensity
correlation measurements between distinguishable indepen-
dent quantum emitters can go below the theoretically expected
value of g(2)

D (0) = 0.5. We attribute this effect to the inherent
blinking of the quantum emitters, which cannot be treated
as linear losses. Using a parametric down conversion pair
source, we experimentally verified the differences between
blinking and linear losses on the second order intensity
correlation function. As the blinking behavior of quantum
emitters is often unknown, it is mandatory to measure the
second-order intensity correlation function for distinguishable
photons impinging on a beam splitter to correctly estimate the
degree of indistinguishability of photons from independent
emitters.
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APPENDIX: SIMULATING BLINKING WITH A
PARAMETRIC DOWN-CONVERSION SOURCE: THEORY

To experimentally test the influence of blinking under
controlled conditions, we use a ppKTP crystal to generate
wavelength degenerate photon pairs. The emitted photons have
orthogonal polarization, but after separating the photons with a
polarization beam splitter we can either rotate the polarization
of one of the photons by 90◦, or let it stay in the orthogonal,
and therefore fully distinguishable, polarization. In each of the
polarization “arms” we can either block the beam, or insert
a neutral density filter. The emitted photons are subsequently
made to interfere on a 50:50 beam splitter. After the splitter
the beams are focused onto photo detectors whose count rates,
and coincidence count rate are recorded. In the following, the
situation when the two photons are cross-polarized, and thus
fully distinguishable will be analyzed.

We shall assume that the photon pair source emits a state
described by

r|H,V 〉〈H,V | + (1 − r)|0〉〈0|. (A1)

The parameter r will account for the fact that the photon
pair production is a spontaneous process, and to keep the
production of four or more photons at a minimum, the pump
intensity is deliberately chosen so that r is below the one
percent level.

The produced photons are subsequently spatially separated
by a polarizing beam splitter, and each beam then suffer linear
losses that can be increased by introducing neutral density
filters in each arm. The total linear losses in each arm will
be denoted 1 − ε2

j , j = 1,2, where the index 1 (2) denotes the
arm of the horizontally (vertically) polarized photon. The state
after the attenuation will be

ρ̂i = rε2
1ε

2
2 |H,V 〉〈H,V | + rε2

1

(
1 − ε2

2

)|H,0〉〈H,0|
+ rε2

2

(
1 − ε2

1

)|0,V 〉〈0,V |
+ (

1 − r + r
(
1 − ε2

1

)(
1 − ε2

2

))|0,0〉〈0,0|. (A2)

When such a state impinge on the two input ports of a 50:50
beam splitter, the ensuing output state ρ̂o becomes

ρ̂o = rε2
1ε

2
2

4
(|HV,0〉〈HV,0| + |H,V 〉〈H,V |

+ |V,H 〉〈V,H | + |0,HV 〉〈0,HV |)
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+ rε2
1

(
1 − ε2

2

)
2

(|H,0〉〈H,0| + |0,H 〉〈0,H |)

+ rε2
2

(
1 − ε2

1

)
2

(|V,0〉〈V,0| + |0,V 〉〈0,V |)

+ (
1 − r + r

(
1 − ε2

1

)(
1 − ε2

2

))|0,0〉〈0,0|, (A3)

where, e.g., |HV,0〉 denotes the case where both (distinguish-
able) photons leave the same beam splitter output port.

We now assume that the two photo detectors have the
quantum efficiencies η2

1 and η2
2. The probability of detecting a

coincidence event at t = 0 will then be

PD(0) = rε2
1ε

2
2η1η2

2
. (A4)

The probability of getting a click in detector one at t = 0 will
be

PD1(0) = rη2
1

(
ε2

1ε
2
2 + ε2

1

(
1 − ε2

2

)
2

+ ε2
2

(
1 − ε2

1

)
2

)

= rη2
1

2

(
2ε2

1ε
2
2 + ε2

1 − ε2
1ε

2
2 + ε2

2 − ε2
1ε

2
2

)
= rη2

1

2

(
ε2

1 + ε2
2

)
. (A5)

The corresponding probability for a detection by detector 2 is
obtained by the index permutation 1 ↔ 2. Since the photons
emanating from the source at a different times are uncorrelated,
the probability to detect a photon at detector j at the time
t = τ are the same. Since the correlator we have used only
measures if the two detection events are coincident (to within
a preset time window), there are two ways of getting an event.
Either detector 1 clicks at some point, and detector 2 clicks
at time t = τ , or vice versa. Thus the probability of getting a
coincidence for the time separation τ will be

PD(τ ) = 2
r2η4

1η
4
2

4

(
ε2

1 + ε2
2

)2

= r2η4
1η

4
2

2

(
ε2

1 + ε2
2

)2
. (A6)

(If one detector had been designated the “start” detector, and
the other the “stop” detector, and only “start-stop” events
would have been recorded, the corresponding probability
would have been halved.) We see that the expression is
symmetric in the indices j = 1,2 and we also see that it now
depends on the pair production rate r squared, so under our
conditions, this probability is significantly smaller that the
coincidence probability at time t = 0.

1. Theory, blinking

To see the influence of blinking emitters, we shall inves-
tigate what happens if one arm is blocked, that is, only one
photon in a pair will reach the beam splitter. This of course
immediately rules out any coincidences at time t = 0 so that
P ′

D(0) = 0.
Suppose we block the H photon in arm 1. The state then

becomes

ρ̂b = r|0,V 〉〈0,V | + (1 − r)|0,0〉〈0,0|. (A7)

After suffering attenuation it is transformed to

ρ̂ba = rε2
2 |0,V 〉〈0,V | + (

1 − rε2
2

)|0,0〉〈0,0|. (A8)

If the state is sent through the 50:50 beam splitter then the
output becomes

ρ̂bo = rε2
2

2
(|V,0〉〈V,0| + |0,V 〉〈0,V |) + (

1 − rε2
2

)|0,0〉〈0,0|.
(A9)

The probability of getting a detection event in detector 1 at
time t = 0 becomes

rε2
2η

2
1

2
, (A10)

and the corresponding probability for detector 2 is

rε2
2η

2
2

2
. (A11)

Thus, again because each photon pair generation event is
independent, the probability for a coincidence at t = τ is

2 · r2ε4
2η

2
1η

2
2

4
= r2ε4

2η
2
1η

2
2

2
. (A12)

If instead arm 2 is blocked, the corresponding coincidence
detection probability is obtained by the index j substitution
1 ↔ 2.

Assuming we now simulate the blinking of quantum
emitters by randomly blocking each arm. If the frequency
of blinking is much lower than the other time scales involved,
such as the mean rate of photon pair production and the inverse
of the preset time window defining “coincidence”, then we
will only have to consider four distinct situations: both arms
are blocked (both emitters are in their off-state), one arm is
blocked and the other is not (one emitter, either 1 or 2, are in
their off-state), or none of the arms are blocked (both emitters
are in their on-state). If the emitter duty cycle (or on-state
probability) is denoted πj , then to get a coincidence at t = 0
it is necessary that both arms are open, and the corresponding
probability/rate is

P ′
D(0) = rε2

1ε
2
2η

2
1η

2
2π1π2

2
. (A13)

We see that changing the attenuation ε2
j of one arm has the

same effect on this probability as changing the emitter duty
cycle πj .

To get a coincidence at t = τ , however, it suffices that one
arm is unblocked. We get three contributions to the coincidence
probability:

P ′
D(τ ) = r2η2

1η
2
2

2

[
π1π2

(
ε2

1 + ε2
2

)2

+π1(1 − π2)ε4
1 + π2(1 − π1)ε4

2

]
= r2η2

1η
2
2

2

[
π1ε

4
1 + π2ε

4
2 + 2π1π2ε

2
1ε

2
2

]
. (A14)

This equation clearly illustrates that now the duty cycle and
the attenuation of the respective arms (emitters) do not enter
on the same footing. The first two terms on the right hand
side of the equation’s last line decrease linearly with the duty
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cycle πj , but quadratically with the attenuation ε2
j . Thus, if the

duty cycle of the arms (emitters) is halved, the coincidence
count rate is also halved. If, instead, the transmission in one
arm is halved by adding linear loss, the coincidence count rate
due to the first two terms in (A14) is reduced to one quarter.
The reason for this is that the rightmost term on the right hand
side of (A14) comes from coincidences where the two photons
passed through separate arms. Thus both arms need to be open
which explains the factor π1π2, and the probability of having
both photons transmitted is ε2

1ε
2
2 . The two leftmost terms on the

right hand side of (A14) comes from contributions where both
photons passed through the same arm, but at different times.
In this case it only matters that this arm is unblocked, and if
it is, then the assumption of low frequency blinking assures
that if the arm is unblocked for the first photon, then it remains
unblocked also for the second photon. Thus the probability due
to (un)blocking is πj . However, when it comes to transmission
due to linear losses, both photons need to pass through in order
for a coincidence to be possible. The probability for this to
happen is ε4

j .

2. Comparison

In the nonblinking case, the ratio between the coincidences
at time t = 0 and t = τ becomes

PD(0)

PD(τ )
= ε2

1ε
2
2

r
(
ε2

1 + ε2
2

)2 . (A15)

If we assume that ε1 = ε2, then the expression simplifies to
1/(4r). If, to compare with quantum dots, we set r = 1, then

we get the simple ratio 1/4. The reason this result differ from
the result 1/2 derived in our above calculations for quantum
dots is that we have not assumed a start and a stop detector,
so that the coincidence at different times (t = τ ) is effectively
twice that one would get if one only counted the coincidence
events in a certain order, e.g., detector 1 as the start signal and
detector 2 as the stop. Thus the ratio (apart from the obvious
factor r−1) is half that we would have gotten if we used a
start-stop coincidence measurement technique.

The ratio between the coincidence rate at time t = 0 and
t = τ if we have blinking is

P ′
D(0)

P ′
D(τ )

= ε2
1ε

2
2π1π2

r
(
π1ε

4
1 + π2ε

4
2 + 2π1π2ε

2
1ε

2
2

) . (A16)

Under the simplified assumption that ε1 = ε2, the expression
reduces to

P ′
D(0)

P ′
D(τ )

= π1π2

r(π1 + π2 + 2π1π2)
. (A17)

One sees that the numerator is proportional to the duty cycle
squared, where as the denominator is proportional to the duty
cycle. Thus this ratio will go to zero as the duty cycle decreases.
For, e.g., π1 = π2 = 1/2, one gets the ratio 1/(6r), which is
clearly smaller by a factor of 2/3 than the number 1/(4r) one
would have gotten for “nonblinking”, perfectly distinguishable
photon pairs. The factor 2/3 is the same reduction that we
found in the analysis of blinking quantum dots. Hence the two
experimental situations are equivalent except for the small
production rate r for spontaneously generated photon pairs.
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