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Abstract: We analyze the degree of entanglement measurable from a quantum dot via the
biexciton-exciton cascade as a function of the exciton fine-structure splitting and the detection
time resolution. We show that the time-energy uncertainty relation provides means to measure a
high entanglement even in presence of a finite fine-structure splitting when a detection system
with high temporal resolution is employed. Still, in many applications it would be beneficial
if the fine-structure splitting could be compensated to zero. To solve this problem, we propose
an all-optical approach with rotating waveplates to erase this fine-structure splitting completely
which should allow obtaining a high degree of entanglement with near-unity efficiency. Our
optical approach is possible with current technology and is also compatible with any quantum
dot showing fine-structure splitting. This bears the advantage that for example the fine-structure
splitting of quantum dots in nanowires and micropillars can be directly compensated without the
need for further sample processing.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Semiconductor quantum dots (QDs) allow for the generation of polarization entangled photons
[1–3] through the biexciton-exciton cascade [4]. Effects such as QD shape elongation [5, 6],
piezoelectric fields [5], inhomogeneous alloy composition [6, 7], strain fields [8], or more
generally all effects lowering the symmetry of the exciton’s trapping potential [6] lead to a
splitting of the exciton state. The spin-degeneracy of the bright exciton level is therefore normally
split in QDs due to the spin-orbit interaction [9]. This splitting is called the fine-structure splitting
(FSS) and its energy scale typically lies between 0 − 100 µeV in the case of III-V semiconductor
quantum dots [7, 10]. The FSS introduces a which-path information during the biexciton-exciton
decay but only in the limit of slow photon detection. Yet, it was argued as being one of the
main reasons for lowering the polarization entanglement [11, 12]. QD growth methods have
been successfully developed to minimize the FSS [13–15], but reaching vanishing FSS remains a
significant challenge. Consequently, several post-growth techniques have been developed to solve
this problem by tuning the FSS to zero. Compensation has been achieved through external strain
fields [8,16], magnetic fields [12], electric fields [17,18], annealing [19], or a combination of these
approaches [20]. Typically, these techniques act macroscopically on the sample and only fully
compensate one out of millions of QDs. Scaling up to many quantum dots on the same sample is
a challenge. Furthermore, the well established strain compensation technique [8, 16] is difficult
to adapt for QDs embedded in photonic nanostructures [7, 15, 21–23] due to strain relaxation
over a length scale of ≈ 100 nm [22]. Quantum dots embedded in nanowires [7, 15, 22–24]
and micropillar cavities [21, 25–28], however, possess several benefits [29] such as enhanced
photon extraction due to directional emission and near-unity single mode fiber coupling [30, 31].
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Therefore, a universal FSS compensation technique easily applicable to QDs would be of great
value.

2. Objective

In this paper, we introduce a novel FSS universal eraser technique which solves above problems
and enhances the measurable entanglement towards unity by using frequency shifting capabilities
of rotating λ/2-waveplates applied to both X and XX photons. Of particular significance,
this frequency conversion process occurs without loss of photons due to only unitary optical
manipulations. FSS compensation techniques [32–36] have been proposed but our approach
differs from the one proposed by Wang et al. [32] as it can be implemented with current
technology, does not need a large electrical bandwidth to approximate a linear voltage ramp, is
not intrinsically slow (≈ 10 kHz) due to high voltage sweeps, and does not rely on the splitting
of different polarization modes [33]. Furthermore, we are not suffering from photon loss and
can compensate an arbitrarily small FSS in contrast to the scheme proposed by Coish et al. [34].
The reason is that we are not relying on stochastic sideband scattering [35] and don’t need an
additional filter system to select the right scattered lines preventing compensation in case the
FSS is comparable with the QD linewidth. In addition, our approach differs from the phase
compensation technique outlined by Zhou et al. [36] as our approach allows to reach unity fidelity
regardless of the FSS value, whereas with the phase compensation technique the fidelity can only
be enhanced but cannot be brought to unity with a finite FSS.
We start our analysis by discussing the influence of the detection system’s time resolution on the
measurable entanglement.

3. The influence of time resolution on entanglement

The term detection system includes every component used to detect the arrival time of the two
photons from the cascade, e.g., detector time jitter, the electronics to correlate the arrival times
of the biexciton and exciton photons, and dispersion in optical components. We define the full
width at half maximum of the correlation time distribution of such a system as the time resolution
τ. For the sake of clarity we only consider FSS for reducing the measurable entanglement
by phase averaging and do not consider dephasing mechanisms [37]. Figure 1(a) depicts the
biexciton-exciton cascade without FSS. The cascade starts by the radiative decay of the biexciton
(XX) state. Either a right- or left polarized single photon is emitted (|R〉, |L〉) [5]. After the
emission of the XX photon the system is in the exciton state (X). This level is degenerate and
|↑⇓〉, |↓⇑〉 are the state’s eigenfunctions in spin space [5]. Here, ↑, ↓ and ⇑, ⇓ denote the electron
and hole spins, respectively. Since we assumed zero FSS, it is impossible to know whether a
spin up or down electron has recombined. This lack of knowledge entangles the photons to
|Φ〉 = 1√

2
(|RL〉 + |LR〉). In this situation, the detection system’s time resolution does not affect

the measurable entanglement of this state since it does not change over time. The situation is quite
different in the case of finite FSS, as illustrated in Fig. 1(b). Due to spin-orbit interaction the
exciton states mix and the new eigenfunctions become 1√

2
(|↓⇑〉 − |↑⇓〉) and 1√

2
(|↓⇑〉 + |↑⇓〉) [38].

After the XX decay the X will precess between these two eigenfunctions until it also decays. This
evolution makes the quantum state time dependent [39] and reads as

|Ψ(t, δ)〉 = 1
√

2

(
|HH〉 + e−i

δ
~ t |VV〉

)
, (1)

where δ is the FSS energy, and |H〉 and |V〉 denote horizontally and vertically polarized single
photon states. Equation (1) describes a fully entangled state even with finite FSS as shown by
Stevenson et al. [39]. In fact, a slow detection system (τ � ~/δ) will average out the exponential
phase term [39] in Eq. (1) and only classical correlations are detected [40]. In contrast, a fast
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Fig. 1. Representation of the biexciton (XX) exciton (X) emission. (a) In case of zero FSS
the X-levels are degenerate and the two decay paths are indistinguishable which creates the
entangled photon state 1√

2
(|RL〉 + |LR〉). (b) For non-zero FSS the X-level is split by δ and

the quantum state will precess between these two states. However, with a fast measurement
(∆E ≥ δ) the two X states (in H/V basis) cannot be resolved anymore and removes the
which-path information. The wavy gray background indicates the uncertainty introduced
through the measurement process.

detection system (τ � ~/δ) will render the two decay pathways indistinguishable since the
energy uncertainty relation ∆E ≥ ~

2τ does not allow for a precise energy measurement anymore.
This point of view is complementary to spectral filtering [41,42] where only states with the same
energy are analyzed but at the expense of filtering off many entangled photons. Please note
that compared to employing spectral filtering a detection system with a high time resolution
does not loose any photons, only each time bin will have a different phase (compare Eq. (1)), as
shown by several experiments [7, 39] resolving the so-called quantum oscillations. Nevertheless,
a finite detector time resolution always introduces phase averaging and inevitably reduces the
measurable entanglement. In the following, we will quantify this effect of reduced measured
entanglement between the excitons in case of finite FSS with a photon detector of finite time
resolution. In a quantum state tomography measurement [43] the state described in Eq. (1) is
projected on the measurement basis 〈i j |, where i, j ∈ { H,V,D, A, R, L } with D, A denoting the
diagonal and anti-diagonal polarization states, respectively. We define the time evolution of the
measured biexciton-exciton pair rate as n(t, τX ) = N0

τX
e−t/τX for t ≥ 0 and n(t, τX ) = 0 otherwise.

Here, t denotes the time after biexciton emission, τX the lifetime of the exciton level, and N0 the
number of detected photon pairs. In case of perfect time resolution, we get a time dependent
correlation rate in each projection i, j as

ni, j(t, δ, τX ) = | 〈i j | Ψ(t, δ)〉 |2n(t, τX ). (2)

The effect of finite time resolution of the detection system is modeled by g(t, τ), a Gaussian with
full width at half maximum of τ. In such circumstances, the detected projections are given by a
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Fig. 2. The measurable entanglement represented as the averaged concurrence C̄ as a
function of the detector time resolution (τ) and fine-structure splitting (FSS) in case of an
exciton lifetime of τX = 1 ns. The white dashed line is a guide to the eye for the examples in
the text and the white solid line highlights the 0.99 contour line.

convolution of the detection time resolution with Eq. (2) yielding

mi, j(t, δ, τ, τX ) = ni, j(t, δ, τX ) ∗ g(t, τ). (3)

The amount of entanglement which remains in mi, j(t, δ, τ, τX ) can be quantified by its concurrence
C which lies between zero and one [44]. It is one in case the system is fully entangled and zero if
there are only classical correlations present. Since the state with finite FSS is evolving in time
we define the time averaged concurrence C̄ weighted with the amount of detected photons per
infinitesimal time bin as

C̄(δ, τ, τX ) := lim
T→∞

1
N0

∫ T

−T
n(t)C

(
ρ
(
mi, j

) )
dt, (4)

where ρ(mi, j) denotes the density matrix reconstructed from mi, j(t, δ, τ, τX ). Equation (4) is
evaluated numerically [45] for an exciton lifetime of τX = 1 ns and the result is presented in Fig. 2.
The result indicates that with sufficiently fast detection, perfect entanglement can be reconstructed.
With a state of the art detection system based on superconducting nanowires [46] a time resolution
of τ = 20 ps is possible without compromising detection efficiency. A FSS of δ = 1 GHz (white
dashed line in Fig. 2), yields a measurement of C̄ = 0.999 very close to unity. With regular
avalanche photodiodes of τ = 300 ps this value already reduces to C̄ = 0.77. Worsening the
detection system resolution further to a time resolution of τ = 1 ns yields almost no entanglement.
In this latter case, the concurrence significantly reduces to C̄ = 0.19. However, the latter
nanosecond time resolution would be preferred in applications regarding secure communication
protocols where accurate timing on picoseconds over kilometers [47] becomes difficult. To
solve this issue, we developed a fully optical compensation technique, which reduces the FSS to
zero. This allows the application of a photon detection system with less stringent time resolution
requirements while maintaining near unity concurrence measurements.
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Fig. 3. Proposed optical setup to compensate for a finite FSS. First, a polarization insensitive
transmission grating splits the biexciton (XX) from the exciton (X) line. Next, a λ/4-plate
transforms the X and XX photons into the circular basis. Finally, a λ/2-plate (one for
each photon) rotating with an angular frequency of f = δ

8π~ compensates for the FSS. The
polarization of the photons is indicated underneath the optical path after each waveplate. The
length of the arrows is indicative for the photon energy. For convenience possible mirrors
have been omitted.

4. Compensating the FSS

In the following, we introduce a method to compensate the FSS, making it possible to employ
detection systems with any timing resolution smaller than the QD’s photon repetition period
such that no overlap between adjacent pulses occur. The evolution of Eq. (1) with finite FSS is
unitary due to the time evolving exponential phase factor. Thus, it must be possible [39] to undo
this phase evolution by suitable unitary optical components. The main component to achieve
complete removal is a rotating λ/2-waveplate. Such an optical component acts on circularly
polarized light as a single sideband frequency shifter [48,49]. A λ/2-waveplate spinning with
angular frequency ω acting on a photon state can thus be described by the following operator

Λ1/2 (ω) =
∑
k

a†
k+ 2ω

c ,L
ak,R + a†

k− 2ω
c ,R

ak,L, (5)

where only k-vectors (k) perpendicular to the plane of the waveplate are considered. Here, c
denotes the speed of light, and ak,λ, a†

k,λ
denote annihilation and creation operators of photons

with wavevector of length k and right or left circular polarization λ ∈ {R, L}, respectively. The
action of a rotating λ/2-waveplate as described by Eq. (5) will up-convert |R〉 photons by the
energy 2~ω and down-convert |L〉 photons by the same amount. Remarkably, this process can
be achieved with unity efficiency. With the help of two λ/4-waveplates the XX and the X state
transform into

|Φ(t, δ)〉 = Λ1/4(−π/4) ⊗ Λ1/4(π/4) |Ψ(t, δ)〉

=
1
√

2

(
|LR〉 + e−i

δ
~ t |RL〉

)
,

(6)

where the angles ±π/4 are oriented with respect to the horizontal orientation. Now, sending this
new state |Φ(t, δ)〉 through a spinning λ/2-waveplate rotating with angular frequency of ω = δ

4~

                                                                     Vol. 26, No. 19 | 17 Sep 2018 | OPTICS EXPRESS 24491 



yields an entangled Bell state

|Ξ〉 = Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
|Φ(t, δ)〉

=
1
√

2
(|RL〉 + |LR〉) ,

(7)

where the time dependent phase factor has been completely removed. Here, Λ1/2(ω) represents
the operator from Eq. (5). For a detailed derivation of Eq. (7) see the Appendix. A possible
setup to erase the FSS is depicted in Fig. 3. First, a dispersive element, such as a high efficiency
transmission grating, splits the XX line from the X line. Next, the XX (X) photon is sent through
a fixed λ/4 waveplate offset from the horizontal direction by −π/4 (π/4). The photon state at this
stage is represented by Eq. (6). Finally, letting them both pass through a rotating λ/2-waveplate
with angular frequency ω = δ

4~ removes the FSS completely. A rotating λ/2-waveplate can
be implemented with electro-optical modulators (EOM) [50, 51]. In this case, the conversion
efficiency is only limited by the transmission through the EOM. In fact, owing to the high
transparency of EOMs a 95 % conversion efficiency was achieved [52]. Note, in contrast to a
rotating λ/2-waveplate the EOM approach needs twice the angular frequency to obtain the same
frequency shift [50]. For example, the RF frequency ( f = ω

π =
δ

4π~ ) necessary to compensate a
FSS of 10 µeV with the EOM approach is 1209 MHz, which is easily achievable with current
EOM technology [50] reaching tens of GHz modulation bandwidth. In particular, the frequency
shifting based on a rotating waveplate implementation has the advantage of only utilizing two
single tone RF signals [50] which can be generated and amplified with off-the-shelf RF equipment.
In contrast, the linear ramp approach by Wang et al. [32] can even with costly tens of GHz
broadband RF equipment merely approximate a linear voltage ramp as higher harmonics are cut
eventually. As our proposed technique is not invasive on the sample containing the QDs it is
possible to compensate for the FSS of every QD as long as the EOM’s frequency can be tuned
to compensate the FSS of the QD under study. This feature renders our approach universally
applicable, as simply a different RF frequency needs to be applied to compensate the FSS of a
different QD.

5. Conclusions

In summary, we have analyzed the effect of finite FSS and the influence of the detection time
resolution on the measurable entanglement from a single QD via the biexciton-exciton cascade.
The uncertainty in energy and time in the measurement allows the emitted QD photons to be
entangled when a detection system with sufficient timing resolution is employed. However,
the precise timing requirement on a picosecond level is hampering the progress in making the
entanglement useful for applications and research. We have proposed a universal optical setup
to completely remove the FSS based on a rotating λ/2-plate, which can be implemented with
current EOM technology. The proposed technique will allow making the entanglement created
from QDs available for many applications like quantum communication, sensing, and imaging.

Appendix

To understand in detail the compensation procedure the typical equation of the entangled state
with fine-structure splitting δ, written as

|Ψ(t, δ)〉 = 1
√

2

(
|HH〉 + e−i

δ
~ t |VV〉

)
, (8)

needs to be rewritten in terms of creation operators a†
z,k,λ

since Eq. (8) is ambiguous about
the time ordering of the excitons (biexciton is emitted before the exciton) and their energies.
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The first index of the creation operator z represent the position of the photon perpendicular to
waveplate orientation, k the wave vector, and λ the polarization state. For the sake of clarity and
taking into account the actual experimental implementation, we only consider photons traveling
perpendicular to the waveplate orientation and neglect any vector representation in the following.
To capture the photon ordering the emission times of the biexciton tXX and the exciton tX are
introduced. The time t as in Eq. (8) is defined as t := tX − tXX . The energies of the excitons are
described by their wave vectors kXX and kX , respectively. For photons in vacuum the dispersion
relation holds

E = ~ω = ~kc, (9)

with c the speed of light. Furthermore, for the sake of clarity the FSS is expressed as ∆k = δ
2~c .

With these definitions at hand we can write the entangled state in Eq. (8) as

Ψ(z, tXX, tX, kXX, kX,∆k) = 1
√

2

(
a†
z−tXX c,kXX+∆k,H

a†
z−tX c,kX−∆k,H

+ a†
z−tXX c,kXX−∆k,V a†

z−tX c,kX+∆k,V

) (10)

which can be shown to be equal to Eq. (8)

Ψ(z, tXX, tX, kXX, kX,∆k) = 1
√

2

(
a†
z,kXX,H

ei(z∆k−tXX kXX c−tXX∆kc)a†
z,kX,H

ei(−z∆k−tX kX c+tX∆kc)

+ a†
z,kXX,H

ei(−z∆k−tXX kXX c+tXX∆kc)a†
z,kX,H

ei(z∆k−tX kX c−tX∆kc)
)

=
1
√

2

(
a†
z,kXX,H

a†
z,kX,H

+ e−i2∆ktca†
z,kXX,V

a†
z,kX,V

)
,

(11)

where we have used the fact that overall phases can be factorized out. Now we are ready to show
the compensation procedure. As explained in the manuscript, we first have to transform from
H/V basis to R/L by means of two λ/4 plates. One λ/4 waveplate, represented by the operator
Λ1/4, will act on the XX and with an angle offset from the horizontal direction of −π/4 and
the other on the X with an offset of π/4. In this way, horizontal and vertical polarization states
are transformed to circular basis necessary for the compatibility with the rotating waveplate
frequency shifter. In the following equation the action of the two λ/4 waveplates upon the
quantum state (10) is calculated:

Φ(z, tXX, tX, kXX, kX,∆k) = Λ1/4(−π/4) ⊗ Λ1/4(π/4)Ψ(z, tXX, tX, kXX, kX,∆k)

=
1
√

2

(
a†
z,kXX,L

ei(z∆k−tXX kXX c−tXX∆kc)a†
z,kX,R

ei(−z∆k−tX kX c+tX∆kc)

+ a†
z,kXX,R

ei(−z∆k−tXX kXX c+tXX∆kc)a†
z,kX,L

ei(+z∆k−tX kX c−tX∆kc)
)

=
1
√

2

(
a†
z,kXX,L

a†
z,kX,R

+ e−i2∆ktca†
z,kXX,R

a†
z,kX,L

)
.

(12)

For convenience we can in Eq. (12) omit z and replace tXX and tX with t, then the quantum state
reads

Φ(t, kXX, kX,∆k) = 1
√

2

(
a†
kXX,L

a†
kX,R
+ e−i2∆ktca†

kXX,R
a†
kX,L

)
.

(13)
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The rotating λ/2-waveplate, represented by the operator

Λ1/2 (ω) =
∑
k

a†
k+ 2ω

c ,L
ak,R + a†

k− 2ω
c ,R

ak,L, (14)

where ω represents the angular rotation frequency, will consequently remove the effect of the
fine-structure splitting if ω = δ

4~ :

Ξ(kXX, kX ) = Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
Φ(z, tXX, tX, kXX, kX,∆k)

= Λ1/2

(
δ

4~

)
⊗ Λ1/2

(
δ

4~

)
1
√

2

(
a†
z−tXX c,kXX+∆k,L

a†
z−tX c,kX−∆k,R

+ a†
z−tXX c,kXX−∆k,Ra†

z−tX c,kX+∆k,L

)
=

1
√

2

(
a†
z−tXX c,kXX,R

a†
z−tX c,kX,L

+ a†
z−tXX c,kXX,L

a†
z−tX c,kX,R

)
=

1
√

2

(
a†
z,kXX,R

a†
z,kX,L

e−ikXX tXX c−ikX tX c + a†
z,kXX,L

a†
z,kX,R

e−ikXX tXX c−ikX tX c
)

=
1
√

2

(
a†
z,kXX,R

a†
z,kX,L

+ a†
z,kXX,L

a†
z,kX,R

)
.

(15)

The last line in Eq. (15) is a fully entangled state without FSS in circular basis. Therefore, it is
not yet precisely the starting state as described in Eq. (8) without the exponential phase term.
But with the addition of two λ/4-waveplates the state can be translated in to H/V basis and is
then equivalent to our initial state described in Eq. (8) without FSS:

Λ1/4 (−π/4) ⊗ Λ1/4 (π/4)Ξ(kXX, kX ) =
1
√

2

(
a†
z,kXX,H

a†
z,kX,H

+ a†
z,kXX,V

a†
z,kX,V

)
. (16)
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